Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J. appl. oral sci ; 25(6): 680-688, Nov.-Dec. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893667

ABSTRACT

Abstract Objectives: Methylcellulose (MC) is a chemical compound derived from cellulose. MTA mixed with MC reduces setting time and increases plasticity. This study assessed the influence of MC as an anti-washout ingredient and CaCl2 as a setting time accelerator on the physical and biological properties of MTA. Material and Methods: Test materials were divided into 3 groups; Group 1(control): distilled water; Group 2: 1% MC/CaCl2; Group 3: 2% MC/CaCl2. Compressive strength, pH, flowability and cell viability were tested. The gene expression of bone sialoprotein (BSP) was detected by RT-PCR and real­ time PCR. The expression of alkaline phosphatase (ALP) and mineralization behavior were evaluated using an ALP staining and an alizarin red staining. Results: Compressive strength, pH, and cell viability of MTA mixed with MC/CaCl2 were not significantly different compared to the control group. The flowability of MTA with MC/CaCI2 has decreased significantly when compared to the control (p<.05). The mRNA level of BSP has increased significantly in MTA with MC/CaCl2 compared to the control (p<.05). This study revealed higher expression of ALP and mineralization in cells exposed to MTA mixed with water and MTA mixed with MC/CaCl2 compared to the control (p<.05). Conclusions: MC decreased the flowability of MTA and did not interrupt the physical and biological effect of MTA. It suggests that these cements may be useful as a root-end filling material.


Subject(s)
Animals , Mice , Oxides/pharmacology , Oxides/chemistry , Root Canal Filling Materials/chemistry , Calcium Chloride/pharmacology , Silicates/pharmacology , Silicates/chemistry , Calcium Compounds/pharmacology , Calcium Compounds/chemistry , Aluminum Compounds/pharmacology , Aluminum Compounds/chemistry , Methylcellulose/pharmacology , Materials Testing , Cells, Cultured/drug effects , Compressive Strength , Dental Pulp/drug effects , Drug Combinations
2.
J. appl. oral sci ; 21(4): 293-299, Jul-Aug/2013. tab, graf
Article in English | LILACS | ID: lil-684563

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA) was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea) using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden) for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity. .


Subject(s)
Curing Lights, Dental , Composite Resins/radiation effects , Hot Temperature , Light-Curing of Dental Adhesives/methods , Polymerization/radiation effects , Analysis of Variance , Composite Resins/chemistry , Materials Testing , Surface Properties , Time Factors
3.
J. appl. oral sci ; 20(5): 576-580, Sept.-Oct. 2012. tab
Article in English | LILACS | ID: lil-654924

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. MATERIAL AND METHODS: One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LeD) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. RESULTS: The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. CONCLUSIONS: The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency.


Subject(s)
Humans , Curing Lights, Dental , Composite Resins/chemistry , Infection Control, Dental/methods , Analysis of Variance , Composite Resins/radiation effects , Hardness Tests , Materials Testing , Polymerization , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL